DIPARTIMENTO DI INGEGNERIA CORSO DI DOTTORATO IN INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE -PHD COURSE IN INDUSTRIAL AND INFORMATION ENGINEERING -34TH CYCLE

Title of the research activity:	Modelling, simulation, and experimental characterization of magnetic materials and components in avionics and industrial applications.
State of the Art:	Several industrial and avionics applications deal with magnetic components, such as, inductors, transformers, motors, power supplies, wireless power transfer systems, etc.
	The behavior of these components and systems is non linear, sometimes exhibits memory effects, and it is strongly dependent on the magnetic materials used: laminated electrical steels, ferrites, etc.
	It is therefore necessary to have at disposal effective and accurate models of such materials, either in transient, or in non sinusoidal steady-state, in order to properly design the devices to increase their efficiency.
	Typical frequency range is from few kHz to several MHz.
	The experimental characterization of the models must be done using suitable frames, such as Epstein, Disk Testers, Domain Viewers, and the waveform control is essential.
Short description and objectives of the research activity:	 The research activity will be based on the following tasks: Experimental characterization of innovative magnetic materials; Engineering modelling of the non linear and hysteretic magnetic behavior of the materials, of the magnetic cores and of the devices; Non invasive and non destructive magnetic testing; Estimation of magnetic dynamic power losses; Estimation of the produced waveforms; Application to the design of magnetic components used in power electronics applications.
Bibliography:	 [1] D.C. Jiles, and D. L. Atherton, "Theory of Ferromagnetic Hysteresis", J. of Magnetism and Magnetic Materials, Vol. 61, pp. 48-60, 1986. [2] D.C. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall, 1991. [3] E.C Stoner, E.P. Wohlfarth " A Mechanism of Magnetic Hysteresis in heterogeneous alloys", Philos. Trans. R. Soc. London A240 pp. 599-642, 1948. [4] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer Verlag, New York (1991). [5] E. Della Torre, Magnetic Hysteresis, IEEE Press: Piscataway, NJ, 2000. [6] A. A. Adly, S. K. Abd-El Hafiz, "Efficient Implementation of Anisotropic Vector Preisach-Type Models using Coupled Step Functions", IEEE Trans. on Magn., Vol. 43, NO.6, pp. 2962-2964, June 2007. [7] K. Löschner, V. Rischmüller, M. Brokate, "Natural Vectorial Extension of the Preisach Operator", IEEE Trans. on Magn., Vol. 44, NO.6, pp. 878-881, June 2008.

	[8] J. V. Leite, P. A. Da Silva Jr., N. Sadowski, N. Batistela, P. Kuo Peng, J. P. A. Bastos,
	"Vector Hysteresis under Nonsinusoidal Induction Waveforms: Modelling and
	Experimentation", IEEE Trans. on Magn., Vol. 44, NO.6, pp. 906-909, June 2008.
	[9] Y. Zhang, Y.H. Eum, D. Xie, C. S. Koh, "An Improved Engineering Model for Vector
	Magnetic Properties", IEEE Trans. on Magn., Vol. 44, NO.11, pp. 3181-3184, November
	2008.
	[10] T. Matsuo, "Rotational Saturation Properties of Isotropic Vector Hysteresis Models
	Using Vectorized Stop and Play Hysterons", IEEE Trans. on Magn., Vol. 44, NO.11, pp.
	3185-3188, November 2008.
	[11] E. Cardelli , "A general Hysteresis Operator for the Modeling of Vector Fields" IEEE
	Trans. on Magn., Vol. 47, n. 8, pp. 2056-2067, August 2011.
	[12] Cardelli, E., Faba, A., Laudani, A., (), Fulginei, F.R., Salvini, A., A challenging
	hysteresis operator for the simulation of Goss-textured magnetic materials, 2017
	Journal of Magnetism and Magnetic Materials, 432, pp. 14-23.
	[13] Cardelli, E., Advances in Magnetic Hysteresis Modeling 2015, Handbook of
	Magnetic Materials, 24, pp. 323-409.
	[14] Cardelli, E., Faba, A., Laudani, A., (), Fulginei, F.R., Salvini, A. Computer
	Modeling of Nickel-Iron Alloy in Power Electronics Applications 2017, IEEE Transactions
	on Industrial Electronics 64(3),7529045, pp. 2494-2501
Scientific	Ermanno Cardelli
coordinator (s)	
Contact (s)	ermanno.cardelli@unipg.it